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Abstract: The application of spectral sensors mounted on unmanned aerial vehicles (UAVs) assures
high spatial and temporal resolutions. This research focused on canopy reflectance for cultivar
recognition in an olive grove. The ability in cultivar recognition of 14 vegetation indices (VIs)
calculated from reflectance patterns (greensyo g0, redg3p-s90 and near-infraredyg 999 bands) and
an image segmentation process was evaluated on an open-field olive grove with 10 different
scion/rootstock combinations (two scions by five rootstocks). Univariate (ANOVA) and multivariate
(principal components analysis—PCA and linear discriminant analysis—LDA) statistical approaches
were applied. The efficacy of VIs in scion recognition emerged clearly from all the approaches
applied, whereas discrimination between rootstocks appeared unclear. The results of LDA ascertained
the efficacy of VI application to discriminate between scions with an accuracy of 90.9%, whereas
recognition of rootstocks failed in more than 68.2% of cases.

Keywords: Olea europaea L., canopy; precision agriculture; unmanned aerial vehicle (UAV), vegetation
indices (VIs), cultivar recognition

1. Introduction

The recognition of spectral signatures related to the genetic characteristics of crop cultivars
contributes to remote monitoring of large agricultural areas required for different crop management
tasks. Certification activities applied in the food authentication process [1], crop disease protection
plans when different cultivar susceptibility should be taken into account [2], and yield and production
forecasts [3] are among the management tasks that could be positively supported by remote-sensing
instruments and approaches.

The effectiveness of visible and near-infrared reflectance spectroscopy to non-destructively
discriminate crop varieties was achieved in several species, such as wheat [4-6], Chinese bayberry [7],
peach varieties [8], and Thai tangerine varieties [9].

Schmidt et al. [10], using a four-channel digital multispectral video camera (450, 550, 650, and
750 nm), reported that it was possible to discriminate between sugarcane varieties, although a significant
degree of within-variety variability was noted. Thenkbail [11] found that the best discrimination
between several agricultural crops was found using four different narrow bands located at 547, 675,
718, and 904 nm.

Anyway, individual bands often result as being less sensitive to vegetation parameters, whereas
their combination, known as vegetation indices (VIs), can functionally relate crop characteristics
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and spectral reflectance [12]. Silva Junior et al. [13] were able to discriminate different soybean
cultivars through multivariate analysis of different VIs. Caturegli et al. [14], in a study focused on
20 turfgrass species/cultivars, measured crop reflectance in the visible and near-infrared spectra,
calculating 15 different VIs that could discriminate between different cultivars within species.

Nevertheless, the efficacy of remote crop/plant spectral characterization is strictly related to canopy
segmentation approaches which require high-resolution images. In recent years, unmanned aerial
vehicle (UAV)-based sensors contributed to the efficacy of remote-monitoring activities mainly due
to their high spatial and temporal resolution, which is unparalleled compared with remote-sensing
technologies based on satellites [15].

Several authors combined advanced object-based image analysis (OBIA) and multispectral
observations, assessing plant parameters such as height, diameter, and volume [16-21], and this
approach yielded a precise definition of the target (tree crown) to be characterized in terms of
spectral signature.

To date, no study on cultivar recognition was performed on olive trees from UAV high-resolution
imagery. The few attempts to apply remotely sensed VIs to an olive grove focused on correlating the
capacity of VIs in estimating transpiration to develop and calibrate a site-specific predictive model [22].
Nevertheless, there is no evidence on the variation of spectral characteristics due to different varieties.

With this in mind, in this study, we combined a segmentation approach (digital surface model),
improving the target (tree crown) recognition, and VIs obtained from multispectral reflectance data
to effectively discriminate field-grown olive cultivars in an experimental plantation with different
scion/rootstock combinations.

2. Materials and Methods

2.1. Study Site and Plant Materials

The study was conducted on an olive grove of the Santa Paolina experimental farm located in
Follonica, central Italy (42°56"39” north (N); 10°46’16” east (E); 38 m above sea level (masl)).

The olive grove was planted in 1992 with a 7 X 5 m spacing. Scions of two Italian olive cultivars,
Frantoio and Leccino, were grafted on self-rooted plants belonging to Carolea, Coratina, Cipressino,
Frantoio, and Leccino cultivars.

The olives were planted using a completely randomized design with at least three replicates,
and they were trained as bush-vase with biennial pruning using local, traditional rainfed olive grove
management. Since planting, the whole grove underwent the same agronomic treatment until data
acquisition, with no differences among scions, rootstocks, and their combination.

2.2. UAV-Based Data Acquisition and Processing

The remote images were acquired with a multispectral camera Tetracam ADC Snap (Tetracam,
Inc., Gainesville, FL, USA) mounted on a modified multi-rotor Mikrokopter (HiSystems GmbH,
Moomerland, Germany). The UAV platform described in Reference [23] performed a single flight at
midday on 3 October 2018 at 25 m above ground level, yielding a ground resolution of 0.02 m/pixel.
The flight plan was designed to obtain over 80% forward and lateral overlap, which was enough
to achieve the highest accuracy in the mosaicking elaboration step. The images were recorded in
clear sky conditions. Tetracam ADC Snap acquires the radiance of three spectral bands with the
following wavelength ranges: green (520-600 nm), red (630-690 nm), and near-infrared (760-900 nm).
For the conversion into reflectance, a vicarious calibration based on the absolute radiance method was
chosen [24], and the radiometric calibration process was realized acquiring, during the flight, images
from three OptoPolymer (OptoPolymer, Werner Sanftenberg, Munich, Germany) reference panels,
with 95%, 50%, and 5% reflectance.

Multispectral images acquired by UAV were mosaicked using Agisoft Photoscan Professional
Edition 1.1.6 (Agisoft LLC, St. Petersburg, Russia). This commercial software allows geotagged image
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alignment, dense cloud generation, and the creation of a high-resolution orthomosaic and a digital
surface model (DSM) of the site. A filtering procedure of each olive crown pixel was then assessed
using the canopy height model (CHM) derived from the DSM (Figure 1). This approach allows an
accurate vegetation pixel extraction, on the basis that olive plants have a greater height than the ground
and can easily be discriminated by Otsu global thresholding, an algorithm that allows discrimination
of two different zones (in this case, olive crown and ground) [25].

42°56'42.10" N 42°56'42.10"N
10°46'13.30" E 10°46'19.70" E

42°56'37.10" N A 42°56'37.10" N
10°46'13.30" E 0 15 30 45 10°46'19.70" E

N ——ms— Meters
Figure 1. Unmanned aerial vehicle (UAV) image processing flow: (a) orthomosaic; (b) digital surface

model (DSM); (c) olive crown vegetation index extraction based on canopy height model (blue numbers
provide an example of normalized difference vegetation index extracted per single crown).

Average values of different VIs were calculated from multispectral data extracted for each plant.

2.3. Vegetation Indices

This study aimed at correlating a series of derivative reflectance indices from green (520-600 nm),
red (630-690 nm), and near-infrared (760-900 nm) bands, in order to discriminate different olive
scion/rootstock combinations. We calculated 14 VIs (Table 1) closely related to leaf area index,
cover geometry, and greenness. The wavelength used to derive the indices, the formulae, and their
references [26-39] are reported in Table 1.

Table 1. Summary of vegetation indices (VIs) calculated.

Index Formula Reference
Normalized difference VI NDVI = % [26]
Green normalized difference VI GNDVI ngﬁﬁmo) [27]
Green red NDVI GRNDVI = NIR T (GREEN +RED) [28]
Simple ratio near.-mfrared'(NIR)/green ratio VI GRVI = GREEN [29]
Simple ratio VI SR = %55 [30]
Ratio VI RVI = R, [31]
Normalized difference green/red index NGRDI = % [32]
Difference VI DVI =sXx NIR - RED [33]
25 (NIR-RED)

Enhanced VI 2 EVI2 = m [34]
Generalized difference VI GDVIN = g}gﬁ,} _7_11 [35]
Transformed VI TVI= (NDVI+ 0.5); [36]

. . _ 1
Modified triangular VI MTVI = (2[1.2(NIR—GREEN)—2A5(RED—GREEN)] ) [37]
Modified soil-adjusted VI MSAVT = 2VIRH1- (ZNIR:UZ‘B(NIR_RED ) [38]
Optimized soil-adjusted VI OSAVI = g NR-RED [39]

Center wavelength: green = R800 nm; red = R660 nm; NIR = R560 nm.
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2.4. Statistical Analysis

Data were processed different statistical approaches. A two-way completely randomized ANOVA
was conducted, assuming scion (Frantoio and Leccino) and rootstock (Carolea, Cipressino, Coratina,
Frantoio, and Leccino) as the first and second factors, respectively, and each thesis (scion/rootstock)
had at least three replications. ANOVAs were conducted using CoStat ver 6.400 (CoHort Software,
Monterey, CA, USA) with unequal sample sizes, using unweighted means and Type III SS.

The multivariate statistical technique of principal component analysis (PCA) was then applied to
the whole set of studied VIs, to extract information from spectral data and transform the data into a set
of uncorrelated orthogonal variables called principal components (PCs). The PCs with eigenvalues
greater than 1 and loading coefficients greater than 0.6 were selected for the component interpretation.
The analysis was conducted using the MS Excel™ statistical package StatistiXL2 (StatistiXL Ltd.,
Broadway, Western Australia).

Linear discriminant analysis (LDA) was applied using Systat 11 (Systat Software Inc., San Jose,
CA, USA) to complement the findings of PCA to assess the adequacy of the data collected in classifying
the plants into groups determined by the scion or rootstock. The objective of LDA is to develop a
discriminant function to examine whether significant differences exist among the groups, in terms of
the predictor variables. The accuracy of the classification was applied by means of a training/validation
routine conducted on subsets of 21 and 22 data points, respectively.

3. Results

F-values of ANOVA for each VI in response to the studied factors are shown in Table 2. For seven
(normalized difference VI (NDVI), simple ratio (SR), green NDVI (GNDVI), green red NDVI (GRNDVI),
simple ratio near-infrared (NIR)/green ratio VI (GRVI), normalized difference green/red index (NGRDI),
and ratio VI (RVI)) of the 14 vegetation indices, highly significant effects were achieved in response to
studied scions, whereas minor and no effects were attained for rootstock and interaction, respectively.

Table 2. ANOVA results (F-value and probability levels) of the 14 vegetation indices.

Index Scion (S) Rootstock (R) SxR
NDVI 117.88 *** 4.00 ** 0.71 18
GNDVI 69.36 *** 2.89 * 0.95ns
GRNDVI 86.16 *** 3.52*% 0.97 s
GRVI 19.57 *** 22108 1.09 s
SR 110.40 *** 4.40 ** 0.621s
NGRDI 87.05 *** 2.67 * 0.56 18
OSAVI 4.66* 3.00 * 0.58 s
MSAVI 0.27 s 3.26* 0.76 s
RVI 111.93 *** 3.87 % 0.73 1
EVI2 0.551s 3.25* 0.71 18
TVI 746 % 3.55* 0.96 s
GDVI 3.63 ns 294 % 0.95 1
MTVI 8.26 ** 3.66 * 0.95 18
DVI 6.04 * 3.35*% 0.96 s

***p <0.001; ** p < 0.01; * p < 0.05; ns, non-significant.

The PCA showed that 98.6% of the variation was explained by the first two components, and that
each scion had its own reflectance behavior with few overlaps (Figure 2). The VIs that had a strong and
positive contribution to the first component (PC1—49.3% of variance) were NDVI, GNDVI, GRNDV],
SR, GRVI, and NGRDI, whereas RVI was negatively correlated. The variables that contributed more to
the second component (PC2—46.1% of variance) were enhanced VI 2 (EVI2), generalized difference
VI (GDVI), difference VI (DVI), transformed VI (TVI), modified triangular VI (MTVI), optimized
soil-adjusted VI (OSAVI), and modified soil-adjusted VI (MSAVI).
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Figure 2. Principal component analysis (PCA) table between vegetation indices and different olive
scion/rootstock combinations. Rootstocks: 1 = Carolea; 2 = Cipressino; 3 = Coratina; 4 = Frantoio;

5 = Leccino.

These results allowed the traits to be differentiated across the first dimension of PCA, assumed to
be informative for comparative assessment of scions. In fact, with very few exceptions, Leccino scions
lay on the left of the first PCA axis, whereas Frantoio scions were positioned toward the right of the
first axis. Otherwise, the distribution observed for rootstocks appeared unclear.

The results of LDA analysis confirmed the efficacy of VI application to discriminate between
scions with an accuracy of 90.9%, whereas the recognition of rootstocks failed in more than 68.2% of
cases (Table 3). Moreover, the iterative process conducted within the discriminant analysis showed that,
using only two variables (NDVI and DVI), it was possible to predict the membership of the plant to its
scion group with an average accuracy of 95% (data not shown). The canonical discriminant function
calculated for scion recognition attained a discriminant score of —52.932 + 75.438 x NDVI — 22.337
x DVI, being the mean of canonical scores 1.279 for Frantoio and —1.956 for Leccino. Furthermore,
with the restricted VI dataset, a correct classification of plants into the group based on rootstock was

not achieved.
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Table 3. Classification matrix for the validation sample (whole vegetation index dataset for 22 cases),
with cases in rows and classification values in columns.

from\to  Frantoio  Leccino Carolea  Cipressino Coratina Total % Correct
Frantoio 13 1 - - - 14 92.9
Scion Leccino 1 7 - - - 8 87.5
Total 14 8 - - - 22 90.9
Carolea 0 0 5 0 1 6 83.3
Cipressino 1 0 2 0 1 4 0.0
Coratina 0 0 3 0 1 4 25.0
Rootstock g antoio 0 1 1 0 2 4 0.0
Leccino 1 1 1 0 1 4 25.0
Total 2 2 12 0 6 22 31.8

4. Discussion

The efficacy of spectral indices in scion recognition emerged clearly from all the applied statistical
approaches. In particular, the highly significant effects on scion discriminating ability emerging in
ANOVA for seven of the VIs (NDVI, SR, GNDVI, GRNDVI, GRVI, NGRDI, and RVI), was confirmed
by both applied multivariate analyses (PCA and LDA). All the above mentioned VIs were derived
from the whole set of visible and NIR wavelengths applied, except for NGRDI, where only green and
red wavelengths contributed to the calculation. The formulae used for the remaining indices (OSAV],
MSAVI], EVI2, TVI, GDVI, MTI1V, and DVI) relied on constants and coefficients proposed and tested
to counteract disturbance effects (such as soil), which were efficiently overcome applying the Otsu
thresholding algorithm.

Within the few experiments conducted on variety discrimination, Silva et al. [13] reported the
effectiveness of the GNDVI index in terms of cultivar discrimination for soybean, with a smaller
contribution emerging for some of the indices that resulted as not very informative in our experiment
(OSAVI, EVI2, TV], and SAVI). Kyratzis et al. [6] observed statistically significant differences between a
set of 20 durum wheat variety genotypes for VIs (NDVI, SR, and GNDVI). In an attempt to discriminate
between commercial sugarcane cultivars, Johnson et al. [40] observed clear differences in reflectance
values within seven cultivars, with varieties being significantly different from each other in 76% of
cases. The level of discrimination could be increased to 81% using SR and NDVI vegetation indices.

On the contrary, Basso et al. [41] ascertained that NDVI was not able to discriminate between two
potato cultivars, because of the influence of soil reflectance and leaf distribution, whereas MCARI/OSAVI,
TCARI, and EVI better responded in discriminating the cultivars. In fact, basic vegetation indices such
as NDVI are very sensitive to the soil background factor, and, when background brightness is increased,
NDVI also increases systematically. Taking unsegmented vegetation into account, the adjusted soil
vegetation indices provide the best performance in describing the spectral behavior of vegetation
with soil background. The difference that emerged with our results is related to the reduction of soil
disturbance effects obtained by means of the segmentation process.

Even though grafting on rootstock is a widely applied and, in many cases, essential agronomic
practice, producing relevant effects on crop productivity or pest tolerance/resistance mechanisms,
limited effects on spectral response of the canopy emerged in our experiment. In particular, even
though the two-way ANOVA results reported significant effects for all the VIs but GRVI, with the
multivariate statistical approach, weak relationships emerged in response to rootstock.

5. Conclusions

The results obtained in this study demonstrate the possibility to discriminate between two olive
scions applying a multivariate approach to the elaboration of VI data. Relevant differences in index
sensitivity emerged; however, the multivariate statistical approach contributed to compensating for the
limits of each index, while stating the effectiveness of a limited set of indices (NDVI and DVI) to reach
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the same discriminant accuracy reported for the whole set of calculated VIs. Further efforts should be
addressed to test our results on a wider range of cultivars, as well as in different environmental and
agronomic conditions.
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